A Pilot Study to Estimate Fry Survival in Lookout Point Reservoir, Oregon, 2017

Tobias Kock and Russell Perry
U.S. Geological Survey
Fred Monzyk
Oregon Department of Fish and Wildlife

U.S. Department of the Interior
U.S. Geological Survey

Research Goal and Objectives

Goal

Estimate survival of Chinook salmon fry in Lookout Point Reservoir during 2017

Objectives

Use a staggered release-recovery study design (staggered release model) to estimate fry survival during April-July, 2017

Use a parentage-based tagging N-mixture study design (N-mixture model) to estimate fry survival during April-October, 2017

Compare estimates from the two study designs, and to available literature, and develop recommendations for an approach that could be used at other locations within the Willamette Project

Survival Models

Two models

Staggered release model

N -mixture model

ZUSGS

Prepared in Cooperation with the U.S. Army Corps of Engineers and the Oregon Department
of Fish of Fish and Wildifife

Development of a Study Design and Implementation Plan to

Estimate Juvenile Salmon Survival in Lookout Point
Reservoir and Other Reservoirs of the Willamette Project,
Oregon

By Tobise J. Kock, Russell W. Perry, Fred R. Monzy, Adam C. Popee, and John M. Pumb

Report Series 2016-Xxxx
U.S. Department of the Interior
U.S. Geologicial Surver
u.s. Geological Survey

Survival Models

Survival Models

Staggered release model
Estimates from intervals between releases
Sampling occurs after at least 2 groups of fish are released Assumes that fish from different releases are similar

Survival Models

Release \#

Sample \#1
Release \#2
Release \#3

Staggered release model
Estimates from intervals between releases
Sampling occurs after at least 2 groups of fish are released
Assumes that fish from different releases are similar
N-mixture model
Estimates from intervals between sampling occasions
Sampling occurs after at least 1 group of fish is released
Requires PBT tagging to identify fish from unique families

Details of Study Design

Month
Fish releases
Sampling occasions
April $n=75,000 \quad$ April 14
$\mathrm{FL}=48 \mathrm{~mm}$
May
June $\begin{aligned} & n=50,000 \\ & F L=97 \mathrm{~mm}\end{aligned}$ June 16
July $\quad n=10,000$ July 15
$\mathrm{FL}=120 \mathrm{~mm}$
August
September
NOR outplants $n=687$ fish

September 11-14

Fish Releases

Details of Study Design

Month

Sampling occasions

April	Shoreline traps Electrofishing	$\left\{\begin{array}{l}\text { April 10-13 } \\ \text { May }\end{array}\right.$
Shoreline traps June	Electrofishing Gill nets	June 12-15

July
August
Gill nets
September
October

July 10-13
August 14-17
September 11-14
October 10-13

Sampling and Precision

Effort and collection estimates

40 traps/nets fished each day
Overall recapture goal $=2 \%$ (250-450 fish/group)

Staggered release model

N -mixture model

Summary

Two models will be evaluated

Both are conceptually sound but not field proven
Side-by-side testing = multiple opportunities to evaluate performance
Staggered release model
Less complex fish marking requirements
Survival estimates defined by release timing
Fish similarities between release groups will be difficult to achieve
N-mixture model
Requires PBT marking of fish
Survival estimates defined by sampling occasions
Estimation success will depend on collection success

